

SUSTAINABLE MANAGEMENT OF AQUATIC ECOSYSTEMS AND FISH RESOURCES IN BURKINA FASO, WEST AFRICA

A.H. Melcher,

F. Peloschek, O. Moog, A. Oueda, P. Meulenbroek, S. Stranzl, M. Kommandan, T. Koblinger, D. Trauner, I. Kabore, R. Ouedraogo, M. Savadogo, J. Sendzimir

BOKU - University of Natural Resources and Life Sciences, Vienna WAU - Department of Water, Atmosphere and Environment IHG - Institute of Hydrobiology and Aquatic Ecosystem Management CDR - Centre for Development Research

JASM

Portland 21.05.2014

.....

BURKINA FASO the country

Sub Sahelian landlocked country 27 4200 km² large

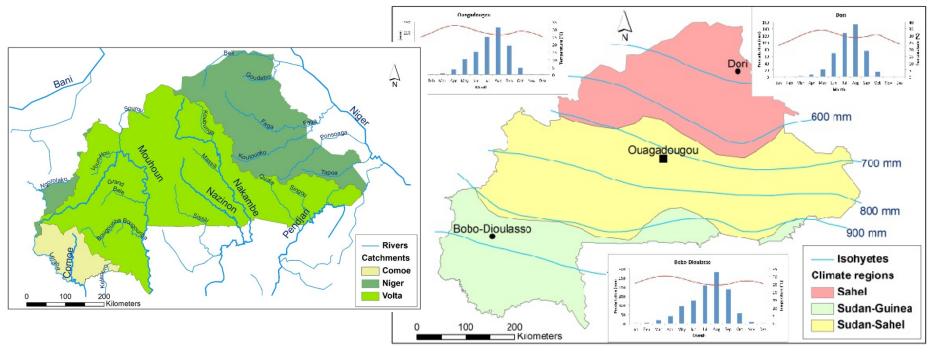
3rd poorest country in 2006

Population growth:

- Current rate of growth +4.4 %/yr
- 6.28 children born/woman

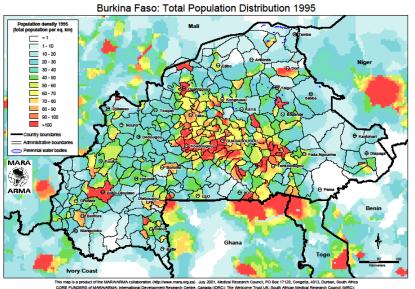
Spatial distribution of the population :

- Average : 37 inhabitants/km2,
- > 100 in the central part,
- 18.4 % in cities, 81.6% in rural areas

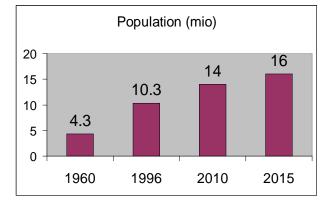

GO OUT OF THE COMFORT ZONE (M. Palmer)

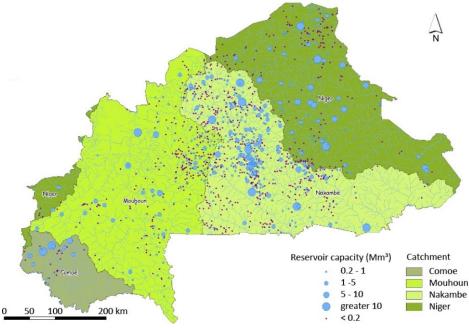
Watersheds and CLIMATE

- Two distinct seasons dry and rainy season
- High temperatures lead to evaporation rates of up to 2.000 mm/a (Baijot et al., 1994; Ouedraogo, 2010)



Mean annual temperature (°C) and precipitation (mm) of Ouagadougou (modified from Climate-Data, s.a.).


Population and reservoirs pressure on freshwater ecosystems


Population annual growth rate 3%

CORE FUNDERG of MARA-VARIA: International Devisionment Research Cente, Canada (IDRC); The Walciume Traut UK, South Affrace Medica Research Council (IMRC); Guess Trapical International Multitaria Intellator Induaria (IMM); Guessen To Tramola in Francia Desares (TDR); And Bata, Marian (RBM), Mina Population Database: Deichmann, U. 1996. World Resources Institute (VRR), http://www.girc.org/writed/amas/adu/da_jatz.html

Reservoirs, construction of N > 1400reservoirs to mitigate water scarcity and fight hunger

Why fish are important in Burkina Faso?

- Protein
- Nutrition
- Subsistance
- Farmers
- Gender
- Market
- Bio-Indicators
- Religion

Why fish are important in Burkina Faso?

Build capacity to **study**, monitor **and manage sustainable fisheries**. Develop **water management and assessment methods** based on fish that are applicable for use in Burkina Faso.

- Identify, evaluate, and prepare existing data for fish, environment and pressures for a **national database**.
- Analyze the **relationships** between **pressures** (incl. overfishing, land use, continuity) and the dynamics in **fish assemblages** and in **water quality.**

Develop **ecological awareness** by using appropriate case studies to demonstrate the importance of ecological services and biodiversity to the nation's food security and health care.

Support the implementation and dissemination of project results by **integration of the project results** in the **education policies** and ongoing national programmes.

SUSFISH Structure

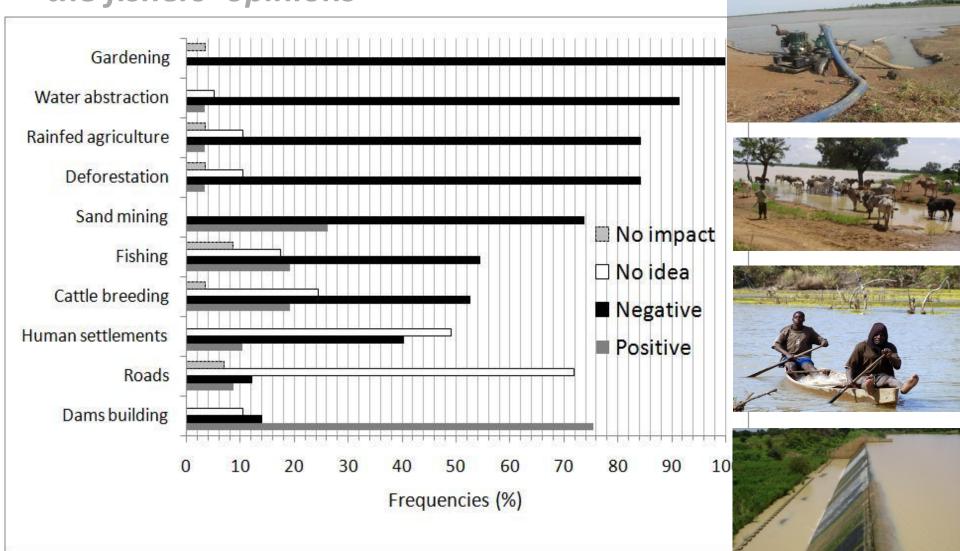
APPEAR Project Organization WP 1 - Project Coordination and Dissemination (BOKU and GDFR) WP 6 - Education and Research (North and South Partners) Collect and analyze Data WP4 Ecosystems Society (GDFR) Species National WP₂ Policies Diversity (IUCN) Fisherman's Conservation WP 5 Knowledge Status (DRSE) Republican Fish WP3 And Assemblages (LAEB) Traditional Water Qual. Institutions Parameters WP7 For (IHSUB) Governance Burkinabe Fisheries, Indicators Fisheries Health, Data, Of Biotic Stakeholders: Food Knowledge, Integrity Managers, Security Advice Policy Makers, and Users WP8 Sustainable Fisheries Systems Analysis & Scenario (IIASA) Management Capacity Development

STUDY AREA

Rainy season farming Dry season fishing

STUDY AREA – RUNNING WATERS

STUDY AREA - RESERVOIRS



Anthropogenic threats to aquatic ecosystems: the fishers' opinions

CLASSIFICATION OF PRSESSURES

RUNNING WATERS – HUMAN INFLUENCE

NO	Close to natural conditions
LOW	Low density of human settlements; only pasture
MEDIUM	Medium/high density of villages; and/or high agricult. land use
HIGH	Urban area with severe impact on aquatic ecosystem

Reservoirs – Agricultural influence

NO	Protected area
LOW	Low density of agricultural land use
HIGH	Dense agricultural land use at waters egde
HIGH + URBAN	High agricultural + urban pressures

- Physicochemical paramters
- Temperature
- Substrate
- Habitat

width

xylal

shading

velocity

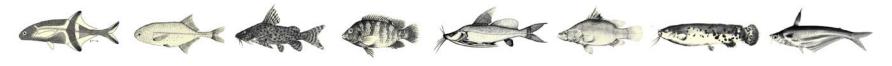
depth

METHODS

FIELD PROTOCOL

- Adapted for BF
- Reservoir
- Running waters
- Human pressure
- Environmental parameters

1 /D	2 Date (dd.mm.yyyy)	3 Investigator
4 Site Name	5 Start (hh:mm)	6 End (hh:mm)
4 Site Name	S Start (nn:mm)	6 Ena (nn:mm)
7 Waterbody type	8 Artificial waterbody?	9 Camera and photo number:
	Yes No	
10 Longitude	11 Latitude	
12 Consultant mathe		12 Weather:
13 Sampling method		
In case of reservoir: 14 Dam broken? Yes No	18 Choriotop description:	20 Tributaries:
15 Inflow: 16 Outflow:		21 Connected reservoirs:
17 Age of the water body:	19 Feeding system:	22 Perennial water body?
	Rain fed? Spring fed?	Yes No
23 Activities:	O water abstraction	O hydropower
O fishing	O washing	O other:
O irrigation	O lifes stock watering	
24 bank structure :	O flat <30°	O slanting
	O steep >45°	O embanked
25 Floating macrophytes [%]:	26 Reed [%]:	29 Dam fixation :
27 Wooded bank vegetation [%]:	28 Unnatural bank vegetation	[%]:
30 Pollution:	O sewage overflows	O acidification
O source pollution	O eutriphication	O liming
O non-source pollution	O toxic substances	O mining
31 Waste disposal? Yes No 32 Specify waste:	33 Reductions? Yes No 34 Foam? Yes No	36 Oudours (specify):
	35 Water color:	37 Flow velocity (m/s)?:
38 Secchi depth (cm):	39 Conductivity (μS/cm):	40 pH:
41 Temperature (°C):	42 O ₂ (mg):	43 O2 (%):
44 Floodplain land use [0=no, 1=		I have been been
[] dense forest	[] standing waters	[] horticulture
[] light forest	[] non-native forest	[] lifestock
[] tree savannah	[] hilly region	[] partial cutting
[] bush savannah	[] crop land ()	[] clear-cutting
[] steppe] crop industrial (y/n) 	[] urban sites (resid.)
[] desert	[] cotton (industrial y/n)	[] urban sites (industrial)
] naturally unvegetated] rice (industrial y/n) 	[] villages
[] wetlands] vegetables (industrial y/n) 	[] mining ()
] others:

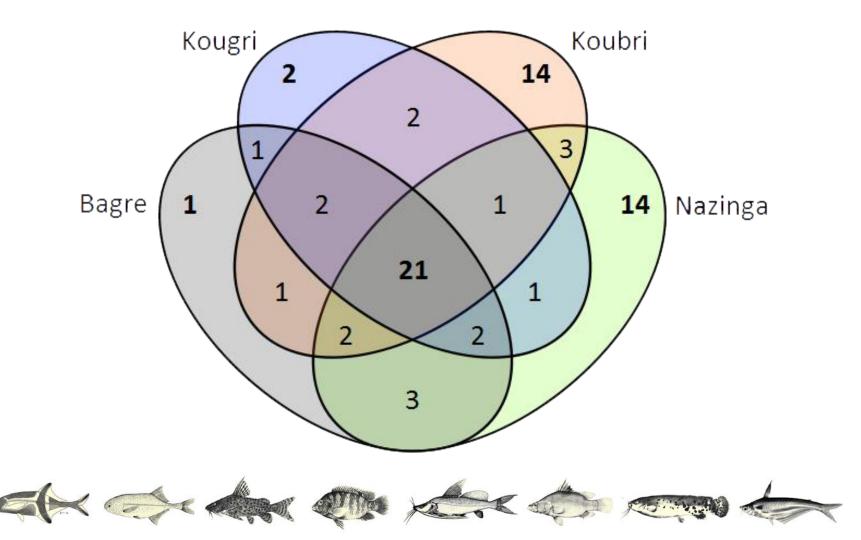

CALE CALL Electric fishing

RESULTS // DISCUSSION

Fish

Family (N=16)	Number of genera	Number of species
ALESTIDAE	5	12
ANABANTIDAE	1	1
BAGRIDAE	1	2
CENTROPOMIDAE	1	1
CICHLIDAE	5	7
CITHARINIDAE	1	1
CLARIIDAE	2	3
CLAROTEIDAE	2	3
CYPRINIDAE	4	14
DISTICHODONTIDAE	1	1
MALAPTERURIDAE	1	1
MOCHOKIDAE	1	8
MORMYRIDAE	6	11
POLYPTERIDAE	1	1
PROTOPTERIDAE	1	1
SCHILBEIDAE	2	3
Total	35	70

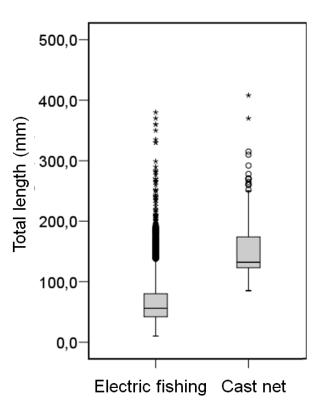
Hydrocynus forskali


Labeo senegalensis

Mormyrus rume

RESULTS // DISCUSSION

Fish species SPATIAL Distribution



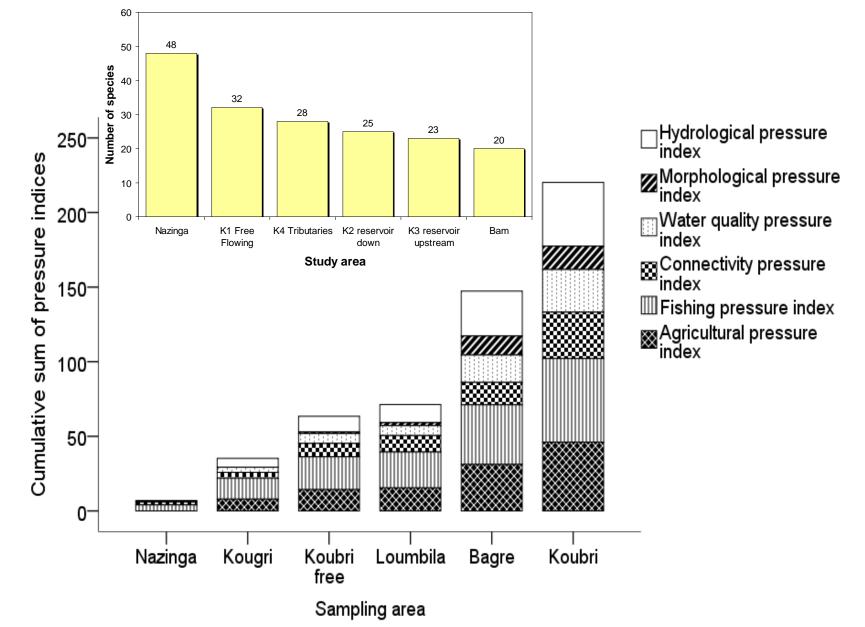
Method comparison

	Electric	Cast net
Number of individuals	8822	9199
Number of species	66	61
Exclusive species	18	11

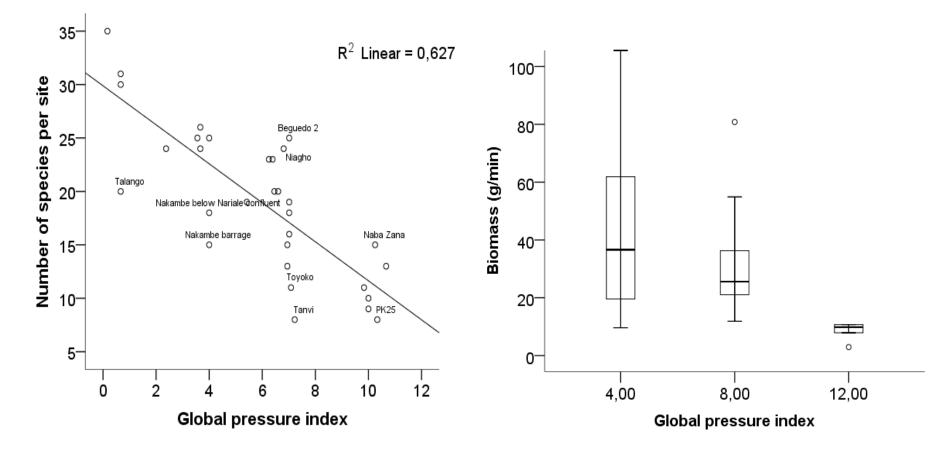
RESULTS // DISCUSSION

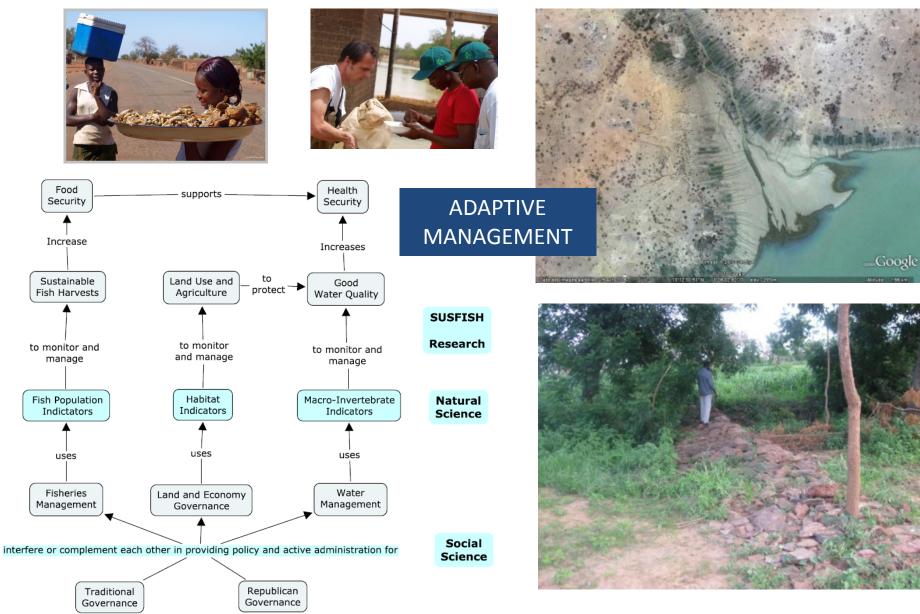
Method - Limitation

Limitations – REFEFERENCES and IMPACTS



HUMAN PRESSURE CLASSIFICATION


Human influence on running waters			
Investigation site	Investigation area	Pre-classification	
Cascades	Bobo Dioulasso	no	
Guinguette	Bobo Dioulasso	no	
Bodjero	Nazinga	no	
Bissiga-Nakambe	Ziga	low	
Nagreongo	Ziga	medium	
Segda	Koubri	medium	
Kougri-Nakambe	Ziga	medium	
Peele	Koubri	medium	
Niango	Bagre	medium	
Loumbila outflow	Loumbila	medium	
Korsimoro outflow	Ziga	medium	
Hostel channel	Ouagadougou	high	
University channel	Ouagadougou	high	


Intensity of human pressure and effects on FISH

HIGHER EDUCATION - MITIGATION – IMPLEMENTATION

Summary

- high traditional knowledge on fish
- nearly **no scientific knowledge** on fish biodiversity
- lack of gouvernance concerning human pressures
- reservoirs and agriculture **limit fish** migration, abundance & size
- ecosystem services & climate change to adaptive management
- socio economic value, gender, partcipation
- capacity building and adaptive management as perspectives

Financed by

Austrian

Development Cooperation

Austrian Partnership Programme in Higher Education and Research for Development CONCLUSIONS published in a book

Symposium Ouagadougou July 2014

http://susfish.boku.ac.at/ andreas.melcher@boku.ac.at

Current questions in sustainable fisheries, water management and higher education

BOOK of ABSTRACTS SUSFISH Workshop & West Africa Symposium 2013 Vienna, Austria, 23. - 28 of June 2013

Edited by Andreas Melcher, Raymond Ouedraogo, Moumini Savadogo and Jan Sendzimir

SUSFISH - Sustainable Management of Water and Fish Resources in Burkina Faso Funded by APPEAR (Austrian Partnership Programme in Higher Education and Research

	Austrian Partners (3)
BOKU Vienna	IHG Institute of Hydrobiology and Aquatic Ecosystem Manageme
DORO Vienna	CDR Centre for Development Research
University of Vienna	Department of African Studies, University Vienna
	International & Burkina Faso Partners (6)
IIASA	International Institute for Applied Systems Analysis, Laxenburg
Ministry of Agriculture, Water and Fish Resources	GDFR General Directorate for Fish Resources, Ouagadougou
IUCN West and Central Africa	International Union for Conservation of Nature, Ouagadougou
University of Ouagadougou	LAEB Laboratory of Animal Ecology and Biology
Polytechnic University	DRSE Department of Rural Sociology and Economy
of Bobo Dioulasso	IHS Institute for Health Sciences